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Project overview 

As part of an existing cost reimbursable agreement between the Kaibab National Forest (KNF) 

and the Lab of Landscape Ecology and Conservation Biology (LLECB) at Northern Arizona 

University, this final report encompasses two principal phases of work, iteratively defined in 

cooperation with Agency representatives: 1) the refreshing and refining of high spatial 

resolution digital data layers on forest structure for the purpose of developing a prototype 

“monitoring toolbox” and estimating change in conditions over time, and 2) the integration of 

these forest structure data layers into spatially explicit estimates of occupancy probability for 

songbirds on the KNF. The monitoring toolbox includes multiple refreshed (i.e., 2006, 2010) 

data products characterizing contemporary forest structure conditions, as well as a framework 

and template for future data refresh and analyses. Model results and estimates of occupancy 

for three Management Indicator Species demonstrate the utility of these forest structure data 

for informing ongoing wildlife monitoring and planning efforts on the KNF. These latter results 

were achieved in collaboration with the Grand Canyon Trust. Specifically, products from this 

report were designed to inform and refine the KNF Monitoring Plan matrix and Draft 

Environmental Impact Statement (DEIS), including an analysis of avifaunal occupancy, and to 

support effects analyses to be incorporated into the DEIS for silviculture and wildlife programs. 

The following sections detail each of the two completed phases of work. Future phases of work 

will build on the associated deliverables. 
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Developing a monitoring toolbox for the Kaibab National Forest Monitoring 
Plan: modeling forest structure and change. 

BACKGROUND AND INTRODUCTION 

The objective of this phase of work was to develop practical and defensible tools to 

monitor forest management activities and progress towards meeting Kaibab National Forest 

(KNF) planning and monitoring objectives, including changes in forest structural conditions.  

Freely available US Forest Service permanent Forest Inventory and Analysis (FIA) plots, Landsat 

Thematic Mapper (TM) imagery, and a USGS 30m digital elevation model (DEMs) were 

leveraged as the principal data sources for this work. FIA, TM, and DEM data were combined to 

develop medium resolution and multi-temporal digital forest structure data layers that cover 

the KNF, in addition to adjacent landscapes (Figure 1). For this work, we also focused on five 

different approaches to correct terrain and atmospheric effects on TM satellite imagery that 

were compared to uncorrected images used to predict forest structural parameters. Basal area 

(BA), stand density index (SDI), canopy cover (CC), mean tree height (HGT), trees per acre (TPA), 

and quadratic mean diameter (QMD) were the principal forest structural variables developed 

for evaluating model accuracy and consistency.  

Remote sensing change analysis of pre- and post-treatment forest and landscape 

conditions requires comparable images from multiple dates. Medium resolution Landsat TM 

(30-m pixels and 7 spectral bands) images measure upwelling radiance from above the Earth’s 

atmosphere that is sensitive to changes in the sun angle (e.g., time of day, time of year) and 

atmospheric conditions at the time of acquisition. To perform change analyses, images are 

typically corrected in order to make accurate comparisons consistent with conditions on the 

ground (Song et al. 2001). Common approaches to atmospheric correction are image-to-image 

calibration and the use of radiative transfer models. These methods are designed to enhance 

change detection while reducing mischaracterization areas left unchanged.   

Image-to-image calibration is an empirical approach that treats one image as a 

reference and transforms (“normalizes”) the other image based on an empirical relationship 

between pixels in the two images in areas where no change has occurred. So-called “invariant” 

pixels include sand, lava flows, deep water bodies or forest canopies. This empirical approach 
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requires no knowledge about atmospheric conditions or sun angle or azimuth for either date. 

Instead, it uses relatively invariant bright and dark land features across the spectrum of values 

in the scene. Automated techniques such as iteratively reweighted multivariate alteration 

detection (IR-MAD) search and identify ‘no change’ pixels in a way that removes observer bias 

and ensures invariant pixels that span the full spectrum are found (Canty 2010). Once ‘no 

change’ pixels have been identified, a model recalibrates target image pixels to the reference 

image to reduce the effect of atmospheric differences between image dates. In order to expand 

the analysis from two to three or more scenes, each new scene must be normalized to the 

reference image. In the end, each image has been altered to match the reference image.  

Radiative transfer models treat each image independently and apply corrections 

according to local and regional assumptions about atmospheric effects on spectral reflectance 

recorded at the sensor. Each image and ‘top of atmosphere’ reflectance is converted to ‘surface 

reflectance’ by reducing the effect of atmospheric scattering and absorption.  Sophisticated 

atmospheric models are contained within relatively easy-to-use software and utilize available 

image calibration data collected by satellite sensors to make appropriate corrections.  

Topography also impacts image spectral reflectance values over time and space. For 

example, a gentle north-facing slope will reflect a smaller percentage of light on November 1 

than on October 15. Unwarranted or severe changes in brightness produced by local hill slope 

and sun angle effects can result in different model predictions of forest structure 

characteristics. Illumination correction techniques are used to estimate sun illumination 

differences due to topography and correct shading of inordinately bright pixels. Illumination 

correction typically utilizes a digital elevation model (DEM) and correction coefficients “flatten” 

an image, lightening pixels where sun incident angles are lowest (e.g., north slopes) and 

darkening pixels where sun incident angles are highest (e.g., south slopes). Illumination 

correction requires an accurate DEM to adequately represent topographic conditions in order 

to correct illumination differences. Slight misalignment between DEM and TM pixels can result 

in dramatic overcorrection, particularly on the edges of high contrast terrain features (peaks, 

ridgelines, canyons). 
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Satellite images taken from different seasons provide contrasting vegetation conditions 

helpful for determining differences in forest composition and structure. Indeed, our previous 

work shows that models utilizing a leaf-on and leaf-off scene performed better than those 

based on a single image date. However, late fall sun angles enhance topographic shading and 

increase the likelihood of over- or under-correction in many image enhancement algorithms. 

Additionally, sun angles change more rapidly in the fall and spring, making the selection of 

anniversary scenes (i.e., images acquired from different years, but at or near the same calendar 

date) more critical because small differences in anniversary dates make greater differences in 

topographic illumination during fall and spring. The performance of multi-date models (e.g., 

models that utilize both leaf-on and leaf-off dates) must evaluated with respect to tradeoffs 

associated with the ability to accurately monitor forest changes and control for confounding 

image factors. 

METHODS 

STUDY AREA 

The study area encompassed an area of over 6-million ha, including all of the KNF 

(Figure 1). This large extent allowed for a large number of Forest Inventory Analysis plots (n = 

587) outside the KNF to enhance the predictive power of forest structural models.  

 

LANDSAT TM IMAGE PROCESSING 

The KNF is covered by three Landsat TM ‘tiles’ identified by path 37, row 34; path 37, 

row 35; and path 37, row 36. We acquired Landsat TM scenes for these tiles during leaf-on 

(September 19 and August 13) and leaf-off dates (October 21 and November 1) from 2006 and 

2010. We mosaicked the scenes from each date together to make four mosaic scenes (leaf-on 

and leaf-off for 2006 and 2010, respectively) and cropped the mosaics to the study area. The 

four cropped mosaics were the basis for all further processing and served as the base-line 

“uncorrected” dataset. We used two different approaches to normalization to complement the 

uncorrected dataset: 1) an image-to-image normalization and 2) a physics-based atmospheric 

correction. We used IR-MAD to make the image-to-image normalization dataset, using the 2006 
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images as reference images and adapting the corresponding leaf-on and leaf-off images from 

2010 to match the 2006 images (the “MAD” dataset). For the atmospheric correction, we used 

the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm in ENVI 

4.7 to process the Landsat data to surface reflectance for each of the four mosaics (the 

“FLAASH” dataset). In addition to the three datasets described, we created three additional 

datasets wherein an illumination correction was applied before any image normalization. We 

used the C-corrected algorithm for illumination correction. The six datasets and their 

abbreviations are listed in Table 1.  

For each dataset, a relatively standard set of model covariates were calculated and 

used. In addition to the Landsat TM channel data (TM bands 1 through 5 and 7), we calculated 

vegetation indices (NDVI, NIR-corrected NDVI, NDVIc, and NIR-corrected NDVIc), a principal 

components transformation based on the correlation matrix (retaining the top two 

components: PCA1 and PCA2), and a tasseled cap transformation (brightness, greenness, and 

wetness).   

 

TOPOGRAPHIC MODELING 

Digital elevation models were acquired from the USGS Seamless website 

(http://seamless.usgs.gov) in March, 2011. These DEMs were mosaicked in ArcGIS, then 

snapped to the Landsat TM grid and cropped to the study area. Visual inspection of the DEMs 

demonstrated terrace-like artifacts throughout the mosaic, which would have significantly 

altered the terrain variables and illumination corrections. Therefore, we applied a weighted 

smoothing filter that smoothed areas with a high level of terrace artifacts and left areas without 

artifacts alone (See Appendix A for description of the weighted smoothing filter). From the 

smoothed DEM, we derived slope, cosine transformed aspect, cosine/slope transformed 

aspect, sine/slope transformed aspect, topographic roughness index, and compound 

topographic index. These variables were anticipated to relate to the terrain context of each 

pixel. For example, cosine transformed aspect is a cosine transformation of the aspect that is 

centered at south-southwest and relates to the predominance of direct sun during the mid-day 

and early afternoon. Other topographic variables relate to the hydrological context (e.g., 
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compound topographic index is a function of the upslope area and correlates with soil depth, 

organic matter (Moore et al. 1993)). A full list of both topographic and remote sensing-based 

variables is given in Table 2. 

 

TRAINING DATA 

USDA Forest Service FIA plots were the principle data source used for training data.  FIA 

plots and coordinates were used as ground reference data to generate a dataset of forest 

structural parameters and predictor variables at each plot location. Plots measured between 

2000 and 2010 were imported to the Forest Vegetation Simulator (FVS) Central Rockies growth 

model variant (Edminster et al. 1991) and projected forward to combine with 2006 and 2010 

TM imagery. Therefore, structural parameters for all trees ≥ 1” d.b.h on FIA plots were 

estimated from sub-models accessed in FVS and projected to 2007 and 2010. Change detection 

with previous Landsat image dates was used to eliminate forest plots showing disturbance after 

measurements were taken. Thus, a total of 585 undisturbed FIA plots from both forest and non-

forest areas were used to develop predictive models of forest structure using Random Forest 

regression trees (Breiman 2001).  

 

FOREST STRUCTURE MODELING  

The Random Forest regression tree and SP (spatial data) packages in R statistical 

software (The R Foundation for Statistical Computing 2008) were used to first develop models 

and implement model runs to produce digital forest structure layers at a 30-m pixel resolution. 

In general, Random Forest trees use multiple subsets (thousands) of both predictor variables 

(see Appendix B) and training data (FIA plots) to identify principle relationships in the data. Each 

model training run is validated using data left out of the bootstrapped sample and errors are 

aggregated for an overall estimate of model accuracy, a machine learning process known as 

bootstrapped aggregation or “bagging.” Random Forest trees are also capable of estimating 

variable importance (Breiman 2001). For this research, a tuning algorithm was applied to 

identify a “best” model using error estimates and variable importance to reduce the number of 

predictors while attaining similar or higher accuracies as that of a “full” model implemented 
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with all predictor variables. Multivariate QR matrix decomposition was also used to reduce 

colinearity among predictor variables (Belsely et al. 1980).  

Model validation was implemented using the inverse of the unexplained variance (error) 

for each predicted forest structure parameter, estimated from data left out of each model 

iteration (typically one-third of plots). We reserved 25% of the FIA and non-forested point data 

as an independent validation dataset, leaving them out of the training process altogether.  

 

FOREST STRUCTURE MODEL REFINEMENT 

Variances explained by all models were used to estimate the best of the six datasets (U, 

UC, F, FC, M, and MC). Due to the independence of models derived from 2006 and 2010 data, 

model predictions showed a large variation in predictive error across space, posing critical 

challenges for quantifying changes in downstream models (e.g., wildlife occupancy models). 

Therefore, four small-scale focal areas across the study area were identified where the authors 

had expert knowledge and could qualitatively evaluate model refinements. Basal Area was 

selected for comparison due to its relatively high accuracy and ease of interpretation. Twenty-

four model methods were compared at the four focal areas based on permutations of the; 1) 

seasonal images used (e.g., both leaf-on and leaf-off vs. leaf-on only), 2) level of linear 

decorrelation (no QR decomposition and QR decomposition tolerances of 0.05, 0.10, and 0.20), 

and 3) specific combination of dates the covariates were selected from (e.g., the model year, 

both years, or 2006 only). Spatial models of basal area were smoothed using a low pass filter to 

reduce spurious image noise and increase accuracy. Qualitative analysis was used to select the 

model with the greatest consistency in areas that were known to have not changed significantly 

between 2006 and 2010.  

RESULTS AND DISCUSSION 

Model and variable performance is shown in Figure 2. In general, the FLAASH+C-

corrected and MAD images produced the best models and greater variance explained that 

models developed with uncorrected imagery. However, models were similar in terms of 

performance and prediction of forest structure variables. A notable exception was TPA, for 
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which the U and UC models had the highest (69% variance explained) and lowest (47% variance 

explained), respectively. TPA was the most difficult variable to predict, with only two models 

explaining over 50% variance. HGT was the ‘easiest’ variable to predict, with all models 

explaining over 80% of the variance. SDI, BA, and CC were also well predicted, with all models 

explaining over 70% of the variance. QMD was poorly predicted, with only one model (F) 

explaining over 60% of the variance. Tuned models performed better than untuned models, 

demonstrating the necessity to use a tuning process to eliminate variables in the modeling 

process.  

Using BA as an example, the most consistent model in no change areas between 2006 

and 2010 was the model based on FLAASH-corrected Landsat TM imagery, but overall there 

were no statistically significant differences in the consistency of the models (Figure 3). Models 

tended to under-predict at very high BA values, which is a common limitation with Landsat-

based predictions of forest structure.  No models overpredicted BA above 150 ft2/ac but M and 

MC had the most overpredictions in the range of 100 and 150 ft2/ac BA. Models with 

illumination correction increased the range of values, suggesting that these models had greater 

ability to discriminate between areas with otherwise similar spectral characteristics. An 

example showing the distribution of predicted BA values by the model for uncorrected imagery 

and FLAASH-corrected/C-corrected imagery is given in Figure 4. 

Closer inspection of an area in the North Kaibab Ranger District shows qualitative model 

differences associated with topography (Figure 5). While both the uncorrected and FLAASH-

corrected models have similar predictions no north and south-facing slopes, the IR-MAD and 

FLAASH-corrected models with a C-correction displayed different predictions. Nevertheless, 

visual assessments of areas of known disturbance indicated that these models are effective for 

identifying change over multiple dates (e.g., 2006, 2010; Figure 6).  

Although the MAD and FLAASH models performed similarly, we selected FLAASH 

atmospheric correction for the final models because of the relative ease of implementation as 

new imagery are analyzed in subsequent years. Therefore, we used FLAASH+C-correction 

covariates for qualitative model refinement and created 24 model variations based on these 

layers. The best of the model refinements was judged to be “Leaf on No QR 2yr” model, which 
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was developed using only terrain variables and satellite imagery from the leaf-on dates (leaf-off 

was excluded) and a 2-stage process to select covariates. In the first stage, a model combining 

training data from both leaf-on dates in 2006 and 2010 was developed. In the second stage, 

separate models from 2006 and 2010 were developed from 2006 and 2010 data, respectively, 

but model covariates were limited to the covariates from the tuned model in the first stage. 

The same set of predictor variables showing the best model performance was used for both 

years. 

The “Leaf on No-QR 2yr” model explained less variance than the original FC model 

(Figure 7) but the original model and BA values were less consistent between dates. Figure 8 

shows the differences between 2010 and 2006 predictions for both the original and 

qualitatively selected models. The standard deviation of the differences between 2010 and 

2006 for the qualitatively selected model was 10.2, while the standard deviation for the original 

model was 19.0. The difference in basal area between 2006 and 2010 from the refined model 

was also closer to zero for a subset of image pixels (n = 4622) selected across the Kaibab NF on 

a 1 km x 1 km grid (Figure 8). A greater skewness of BA differences toward negative values was 

indicative of greater sensitivity to forest change and reduced sensitivity to differences in 

understory plant phenology (e.g., grasses and forbs). These comparisons showed more 

consistent BA predictions from the refined model between years, particularly in areas with no 

apparent disturbance. Use of slightly different seasonal image dates, and variability in 

understory greenness between years, likely contributed to lower BA consistency in our 

preliminary models. 

The top candidates from the model refinement step were generally based on both years 

to select covariates (stage 1) and were generally based on the leaf-on dates only. Figure 9 

illustrates this step with an example of the five top models for one of our four ‘focal’ areas on 

the north rim of the Grand Canyon. Since the goal of the model refinement was to increase 

consistency across years, these results are not entirely surprising. The selection of covariates 

from the 2-year model suggests that models based only on the present year may be pick up 

correlations between predictor variables and image derivatives that are unique to only one year 

(i.e., because of offset phenology or differential image characteristics such as viewing 
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geometry); whereas 2-year models are likely identifying covariates that have greater 

consistency in describing forest characteristics over time. In the latter case, measures of 

performance may indicate models are better but closer inspection of the predicted spatial 

distribution of the predicted forest variable reveals greater inconsistency over space. The 

preponderance of models based on leaf-on dates only is likely due to the low sun angles and 

increased shading associated with leaf-off dates. Although C-correction aims to correct for 

variability in illumination due to incidence angle effects, it only works in areas of relatively 

shallow slopes and does not work in shadowed areas. This study in particular was somewhat 

limited by the availability of leaf-off dates in 2010 and our selection of 1 November 2010 was 

not ideal because of the low sun angle. An earlier leaf-off date in October is preferred but in 

2006 was not available due to clouds. Given the sensitivity of these models to variations in leaf-

off imagery, coupled with the high model performance using leaf-on dates only, we 

recommend an approach to modeling that utilizes leaf-on dates only.  

The most important variables for the original FLAASH-corrected/C-correction models are 

given in Table 4. Elevation and slope were important in all models and the most important 

overall. Four of the first five remote sensing variables were all related to greenness during the 

leaf-off season (NDVIc, NDVI, NDVI4, and greenness). The lone non-greenness variable was 

band 1, which is most related to albedo. Other top topography-related variables included CTI, a 

proxy for soil wetness, and cosine-transformed aspect, a proxy for solar exposure.   

The most important variables in these final models are indicated in Figure 10. The top 

variable was elevation, followed by NDVIc and NDVI (all leaf-on dates, since these models only 

used leaf-on dates). Cosine of aspect and topographic ruggedness index were also very 

important in most models. Outside of variations of NDVI, reflectance bands did not explain 

much variation. The best performing reflectance band was band 1, a proxy for albedo. Raw 

reflectance bands generally did better than principal components bands. 

These results highlight the importance of topography and vegetation indices in 

influencing forest structure. The abundance of leaf-off greenness-related variables highlight the 

leaf-off period as a time of greater discrimination of forest structural characteristics in the 

original models. Characteristics of the leaf-off period that may contribute to this result include 
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the loss of leaves by deciduous trees and the senescence of background understory vegetation. 

Green understory vegetation may saturate NDVI in areas with incomplete canopy closure and 

confound results. Models with leaf-off variables had less consistency across years and in all 

models. It is important to note also that solar angles are problematic during the leaf-off phase 

and can contribute to problems with overshading, particularly in areas with moderate and 

steep slopes. Thus, there are trade-offs between models that show good performance and 

those that produce more consistent forest structure estimates between years. Using images 

with higher elevation sun angle and more consistent sun illumination improved the ability to 

monitor forest conditions over time. 

A potential source for model differences comes from the modeling approach. Random 

Forests utilizes a double randomization and thousands of simulations to produce predictive 

models that predict the greatest amount of variance. Because of the stochastic nature of this 

approach, similar but different covariates may be selected for model runs (e.g., NDVI vs. 

NDVIc). This subtle but distinct selection of different predictor variables may result in different 

predictions, particularly in areas of steep terrain or in areas with high canopy cover where NDVI 

may become saturated. While we anticipated that illumination correction would boost model 

predictions on north-facing slopes, the illumination correction itself introduces artifacts on 

ridgelines due to slight misalignment of DEMs and satellite imagery. For models that rely 

heavily on illumination-corrected satellite imagery, predictions may be suspect on ridgelines 

and on steep slopes. Thus, the benefits of illumination correction come with the drawbacks of 

imprecise topographical effects on terrain shading. Our qualitative analysis of numerous models 

with varying tuning parameters and methods for selecting covariates suggested that the 

inclusion of leaf-off date increased model performance for a single image date but decreased 

consistency across dates. We attribute this to low solar elevation angles associated with the 

rapidly changing solar elevation during the fall season. 

Overall, all models performed similarly with good predictions for HGT, BA, SDI, and CC; 

moderate predictions for QMD, and poor predictions for TPA. Image normalization via empirical 

(e.g., IR-MAD normalization) and radiometric (e.g., FLAASH correction) methods improved 

models over the uncorrected Landsat DNs but the effects of illumination correction are less 
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clear. Generally, all models had the greatest difficulty with areas of high basal area, which is 

consistent with other studies of forest structural characteristics using Landsat TM. The inclusion 

of topographic variables likely increased the predictive power of models but interactions with 

illumination corrections may have contributed to differences between IR-MAD and FLAASH-

corrected models involving illumination correction. Given the qualitative data assessment, we 

are confident that the FLAASH corrected imagery with c-correction provides the best 

information regarding forest structural characteristics. With some caution, we suggest that late 

season leaf-on dates be used as the basis for multispectral covariate determination because 

solar incidence angles during the leaf-on period are higher and less sensitive to interannual 

variation in the selection of anniversary dates in image acquisitions. We attribute the lower 

quality of prediction to areas with high basal area to a combination of pixel saturation common 

to Landsat TM-based modeling, as well as a dearth of training pixels in areas of high basal area.  

MONITORING ‘TOOLBOX’ 

Multi-temporal digital forest structure data layers provide a repeatable and precise 

means to analyze forest change due to silvicultural treatments in addition to disturbance. To 

demonstrate data applications, we developed a simple change equation for monitoring the 

percent forest change for differing forest treatments using data layers as follows: 

Eq. 1.  ΔS = (S2 – S1/S1) x 100, 

where S1 is the forest structural variable in time one (2006) and S2 is the forest structure 

variable in time two (2010).  The absolute value of negative differences multiplied by 100 

provides an estimate of percent change.  As an example, we used treatment area polygons for 

management activities completed between 2007 and 2009. These data provide a useful 

summary of how differing treatment types impact forest density and other conditions 

important to achieving forest restoration and hazardous fuels mitigation (Figure 6).  

Contemporary tree thinning and burning approaches produced similar results when compared 

to group selection silvicultural techniques that remove a greater proportion of basal area 

(Figure 11).  
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CONCLUSIONS AND RECOMMENDATIONS 

Multiple model iterations were used to establish state-of-the-art image correction and 

data integration techniques for modeling forest structure and change. FIA plot data, combined 

with well-calibrated multispectral and multitemporal satellite images, proved capable of 

producing reliable forest structure estimates over time. The techniques we applied were 

relatively low-cost, utilizing FIA forest inventory plots and freely available satellite data.  

Nonetheless, advanced technical skills are needed to apply image and data processing methods 

to obtain good results.  

Based on our comparisons, we recommend that future forest structure data be 

developed following refined forest structure modeling methods described above. Future image 

processing should apply atmospheric and terrain correction techniques that improved model 

outputs and variance explained. Variation in understory vegetation and image characteristics 

can be controlled by ‘matching’ image dates (e.g., August or September) between years to 

control for sun illumination and seasonal effects on model outputs. Models using single image 

dates produced more reliable forest structure outputs over time. These adjustments showed an 

enhanced ability to detect area of forest change and no-change, while reducing negative plant 

phenology impacts on forest structure estimates.   

For future modeling efforts, we recommend an approach (e.g., FLAASH-based) that 

utilizes radiometric principles to convert satellite imagery to surface reflectance before 

modeling forest structure. The selection of a good leaf-off date is important and should be 

complemented with an appropriate leaf-on date. Due to increased contrast in shading due to 

lower solar angles during the leaf-off date, an illumination correction is recommended to 

correct for topography-induced differences in illumination. Topography data is a critical 

component of this modeling process and extreme care needs to be taken to ensure quality 

topographic data is used both in the model and for developing the illumination correction. We 

outlined a novel technique to eliminate terrace artifacts that manifest in DEM derivatives (e.g., 

aspect, slope). Good geometrical alignment of the DEM with satellite imagery is also critical 

because slight misalignment will cause extremely high and low values in illumination-

corrections. Given the model performance of IR-MAD vs. FLAASH atmospheric correction, and 
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given the fact that atmospheric correction has a more rigorous physics-based foundation, we 

recommend atmospheric correction and illumination correction for future model development. 

A principle limitation to the strength of these models is the dearth of plots with extremely high 

values in all predictor variables. The ability to predict areas with high BA, TPA, QMS, SDI, and CC 

relies on an abundance of training data also with high values. This modeling approach is not 

effective at predicting beyond the range of the training data and, therefore, it is recommended 

that additional plots in areas of high BA, CC, and TPA are added for future modeling efforts. 
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Table 1. Acronyms for datasets used in this study. Acronyms reflect the image processing and 

illumination correction applied to the Landsat TM source imagery. 

 Illumination correction 

Normalization technique None C-correction 

Raw DN (unprocessed Landsat TM) U UC 
IR-MAD (image-to-image normalization) M MC 
FLAASH (atmospheric correction) F FC 
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Table 2. List of forest structure covariates used in the modeling and the abbreviations for each 

used in the rest of this report. 

 
Forest structure covariates Abbreviation 

R
em

o
te

 s
en

si
n

g 
va

ri
ab

le
s 

Landsat TM1 (leaf-on) b1_on 
Landsat TM2 (leaf-on) b2_on 
Landsat TM3 (leaf-on b3_on 
Landsat TM4 (leaf-on) b4_on 
Landsat TM5 (leaf-on) b5_on 
Landsat TM7 (leaf-on) b7_on 
Landsat TM1 (leaf-off) b1_off 
Landsat TM2 (leaf-off) b2_off 
Landsat TM3 (leaf-off) b3_off 
Landsat TM4 (leaf-off) b4_off 
Landsat TM5(leaf-off) b5_off 
Landsat TM7 (leaf-off) b7_off 
NDVI  (leaf-on) ndvi_on 
NDVI  (leaf-off) ndvi_off 
NDVIc (leaf_on) ndvic_on 
NDVIc (Ieaf_off) ndvic_off 
NDVI/TM4 (leaf-on) ndvi4_on 
NDVI/TM4 (leaf-off) ndvi4_off 
NDVIc/TM4 (leaf-on) ndvic4_on 
NDVIc/TM4 (leaf-off) ndvic4_off 
NDVI ratio (leaf-on/leaf-off) NDVI_rat 
NDVIc ratio (leaf-on/leaf-off) NDVIc_rat 
Brightness (leaf-on) bright_on 
Greeness (leaf_on) green_on 
Wetness (leaf_on) wet_on 
Brightness (leaf-off) bright_off 
Greeness (leaf_off) green_off 
Wetness (leaf_off) wet_off 
TM bands PCA 1 (leaf-on) pca1_on 
TM bands PCA 2 (leaf-on) pca2_on 
TM bands PCA1 (leaf-off) pca1_off 
TM bands PCA2 (leaf-off) pca2_off 

To
p

o
gr

ap
h

y 

Elevation  el 
Slope slope 
Cosine transformed aspect trasp 
Cos/slope transformed aspect cos 
Sin/slope transformed aspect sin 
Topographic ruggedness index tri 
CTI cti 
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Table 3. List of forest structural variables modeled in this study. 

Variable Acronym 

Basal Area BA 
Percent Canopy Cover CC 
Forest Height HGT 
Stand Density Index SDI 
Quadratic Mean Diameter QMD 
Trees per Acre TPA 
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Table 4. Relative variable importance for FLAASH-corrected, C-corrected models. Variables are 
ordered by the sum of relative importance over all models. Where relative importance is below 
0.01 (1% of the maximum importance), it is denoted by ‘-‘. Variable acronyms are defined in 
Tables 2 and 3. 
 

 Variable HGT SDI BA CC TPA QMD SUM 

el 0.161 0.251 0.331 0.135 0.156 0.186 1.220 
slope 0.027 0.099 0.152 0.056 0.121 0.104 0.557 
ndvic_off 0.052 0.100 0.179 0.089 - 0.133 0.553 
cti 0.027 0.099 - 0.044 0.163 0.093 0.426 
cos 0.032 0.089 - 0.048 0.140 0.114 0.424 
ndvi_off 0.030 0.101 0.115 0.058 - 0.091 0.395 

b1_on 0.027 0.107 0.124 0.049 - - 0.307 
ndvi4_off 0.021 0.064 0.100 0.047 - 0.069 0.301 
green_off 0.029 - - 0.053 0.115 0.089 0.286 
ndvi_on 0.030 - - 0.041 0.158 - 0.230 
b4_off 0.023 - - 0.034 0.146 - 0.203 
green_on 0.022 - - 0.031 - 0.121 0.174 
tri 0.038 0.092 - 0.041 - - 0.171 
b7_on 0.030 - - 0.041 - - 0.071 
ndvi_rat 0.028 - - 0.039 - - 0.067 
pc3_off 0.023 - - 0.037 - - 0.061 
sin 0.018 - - 0.041 - - 0.059 
b5_off 0.026 - - 0.033 - - 0.059 

b3_on 0.020 - - 0.032 - - 0.052 
pc2_on 0.016 - - 0.029 - - 0.045 
b2_on 0.020 - - 0.021 - - 0.041 
b7_off 0.033 - - - - - 0.033 
ndvic_on 0.028 - - - - - 0.028 
wet_on 0.028 - - - - - 0.028 
ndvi4_on 0.027 - - - - - 0.027 
wet_off 0.024 - - - - - 0.024 
b3_off 0.024 - - - - - 0.024 
pc1_on 0.021 - - - - - 0.021 
bright_off 0.021 - - - - - 0.021 

pc2_off 0.020 - - - - - 0.020 
b4_on 0.020 - - - - - 0.020 
b1_off 0.020 - - - - - 0.020 
trasp 0.019 - - - - - 0.019 
b2_off 0.016 - - - - - 0.016 
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Figure 1. Map showing study area with respect to Kaibab National Forest boundaries (solid bold 

line) and training plots. Training plots include systematically located FIA plots and non-forested 

points.  
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Figure 2. Variance explained and number of variables used in six forest structural variables for 

six different image treatments (x-axis; U, UC, F, FC, M, and MC). Untuned and tuned models are 

shown. Variable acronyms are defined in Table 3. 
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Figure 3. Scatter plots of actual vs. predicted basal area for the validation data withheld from 

modeling for the six different classes of image treatments. Pearson’s r correlation for each 

model is inset into each plot. Although not significantly different, the FLAASH and MAD 

corrections had the best predictions on the validation data. In general, all models tended to 

underpredict basal area at higher basal area values. 
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Figure 4. Basal area (BA; ft2/ac) density plots for 2006 A) uncorrected (U) and B) FLAASH/C-
corrected (FC) TM imagery from an array of 1km x 1km points (n = 4622) overlapping the Kaibab 
National Forest. Forest structure variables modeled from uncorrected imagery were sensitive to 
terrain effects, as noted by an uneven BA distribution and lower density near 100 ft2/ac.  
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Figure 5. Detail of four different model predictions on the North Kaibab Ranger District. The 

panels represent the uncorrected model, the FLAASH-corrected model, the IR-MAD+C-

correction, and the FLAASH-corrected, C-correction models. Of particular interest is the role of 

topography (north- vs. south-facing slopes) when comparing the four models. While 

uncorrected and FLAASH-corrected images are relatively similar, the IR-MAD and FLAASH-

corrected with illumination correction have different behavior on north vs. south-facing slopes. 

More specifically, the IR-MAD model predicted greater basal area on south-facing slopes while 

the FLAASH corrected image predicted greater basal area on the north-facing slopes. 
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Figure 6. Example of changes in basal area between 2006 and 2010 predicted by the FLAASH-

based, C-corrected model. The path of the major tornado from the tornado events of 2010 is 

clearly shown in the 2010 model, as is a large area of thinning treatments. 
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Figure 7. Variance explained by FC original (repeated from Figure 2) in relation to the best 

model from a qualitative standpoint (“Leaf on No-QR 2yr”) from 2006 and 2010. For six forest 

structure variables. Variable acronyms are defined in Table 3. Although the original FC models 

performed better than the “Leaf on No-QR 2yr” models, they were more consistent from 2006 

to 2010 which results in greater confidence in estimating interannual change and is better for 

downstream models such as occupancy models which rely on these data.  
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Figure 8. Density plots of Basal Area from the original FLAASH+C-corrected imagery (top row), 

the FC Leaf on No-QR 2yr model indicating improved consistency for refined basal area model 

(bottom row).  



  

28 | P a g e  

 

 
Figure 9. Difference in Basal Area (BA) between 2010 and 2006 as predicted by five models at 

the north rim of the Grand Canyon. Areas in blue and red have the greatest differences in 

predicted BA between the two years whereas areas in white or light colors are predicted to 

have little or no change. These five models were judged to be the best of the 24 refined models 

because of the prevalence of no change areas. As an example, the “Leaf on QR 0.05 2yr model” 

(upper right) shows the greatest change bias as indicated by the contiguous red areas on the 

canyon slopes and was considered to be the worst of these five models. 
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Figure 10. Cumulative variable importance for final FLAASH-corrected/C-correction models. 

Variable importance was summed over all models and divided by the elevation (el)that 

explained the greatest combined variance.  
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Figure 11. Percent change in forest structure variables for estimating the impact of common 
treatment types, such as small diameter tree thinning techniques, group selection, and 
broadcast burning implemented on the Kaibab National Forest between 2007 and 2009.  
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Appendix A. Weighted DEM Smoothing 
A 30-m NED Digital elevation model (DEM) was obtained from the USGS Seamless website on 
May 15, 2011, as a number of overlapping tiles, then mosaicked and clipped to the study area. 
Inspection of derivative products such as slope and aspect indicated terrace artifacts were 
abundant in some regions of low relief so we applied a weighted smoothing to combine a 
smoothed surface with the original DEM in order to minimize the artifacts. The weighted 
smoothed DEM was calculated as: 
 

, 
 

where  represents the original DEM smoothed using a low-pass circular filter with radius 
of 7 pixels and  represents the neighborhood-level estimation of contour artifacts in the range 
of [0,1]. The calculation of  is based on an algorithm with four steps:  
 

1) Create a binary mask of all cells with slope values of 0.  

2) Grow the mask by 3 cells.  

3) Modify the mask based on a majority filter over circular neighborhood with radius of 3 

pixels.  

4) Blur the mask by applying a low pass filter to a circular neighborhood with radius 7.  

Step 4) provides a spatial representation of . A comparison of , , , and 
 are provided in Figure A1. In the figure, the undesirable artifacts and desirable high-

resolution relief from DEM are visible in  and missing in , whereas in , it 
is apparent that the undesirable artifacts have been eliminated and high-resolution relief has 
been preserved. 
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Figure A1. Examples of Original DEM, Smoothed DEM, Weighted Smoothed DEM, and 

smoothing weights. Each panel shows a landscape-scale map of a DEM hillshade with an inset 

view. Terraces are seen clearly in the inset view. The terraces have been eliminated in the 

smoothed DEM but so has the shallow drainage in the northeast of the inset map. The 

weighted smoothed DEM shows both the smoothed terraces and the drainage feature. The 

smoothing weights are shown for the mapped area to indicate the extent of terraces detected 

(in white).  

 



  

33 | P a g e  

 

Appendix B. Detailed descriptions of all covariates used in the models. 
 
LANDSAT TM1-5,7 

Landsat TM1-TM5 and TM7 are the 6 reflective channels for Landsat TM and represent the 
upwelling radiance in the blue (0.45-0.52 µm), green (0.52-0.60 µm), red (0.63-0.69 µm), near-
infrared (0.76-0.90 µm), and shortwave infrared (1.55-1.75 and 2.08-2.35 µm). 
 

NDVI 

Normalized Difference Vegetation Index, or NDVI, is the normalized difference between the 
near-infrared (NIR) and red reflectance and is defined by the formula: 
 

 
 
NDVI is correlated with vegetative cover because chlorophyll absorbs strongly in the red 
spectrum and cell walls reflect in the near-infrared spectrum.  
 
Tucker, C. J. (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing 

of Environment, 8:127-150. 

 

NDVIC 

NDVIc is a modification to NDVI specifically for conifer forest and relies on shortwave-infrared 
to account for canopy closure: 
 

 
 
where  and  are the minimum and maximum shortwave-infrared reflectance 
in areas with completely open and completely closed canopies, respectively (Nemani et al. 
1993). 
 
Nemani, R.; Pierce, L.; Running, S. 1993. Forest ecosystem process at the watershed scale: Sensitivity to remotely-

sensed leaf area index estimates. International Journal of Remote Sensing, 14: 2519–2539. 

 

NDVI/TM4 

NDVI is somewhat sensitive to low NIR values. Dividing by NIR increases contrast for low values 
of NIR: 
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NDVI RATIO (LEAF-ON/LEAF-OFF) 

This is a two-date variable that utilizes NDVI from the leaf-on and leaf-off date. This should 
discriminate between deciduous and evergreen areas because deciduous forests have high 
NDVI during leaf-on and low NDVI during leaf-off periods 
 

BRIGHTNESS, GREENNESS, AND WETNESS (TASSELED CAP) 

The Tasseled Cap transformation is a specific transformation that recombines the channel data 
from Landsat TM into a smaller set of unrelated variables. It was developed as a principal 
components analysis (PCA) but it was observed that PCA tended to produce similar outputs on 
most scenes. Therefore, the Tasseled Cap was developed as a standard transformation of 
Landsat data. The first three components of the Tasseled Cap transformation are related to 
brightness (albedo), greenness, and wetness.  
 

TM BANDS PCA 

Principal Components Analysis (PCA) is a process in which Landsat TM data is recombined to 
form a new set of bands that are each a weighted sum of band values. PCA creates an 
orthogonal transformation of the input data such that each PC output band is linearly 
independent from other PC bands. PC bands are ordered such that the first PC describes the 
greatest amount of variance, followed by the second, third, and so on. For this study, we used 
the first and second PC bands. 
 

ELEVATION  

Elevation is the vertical distance in meters at a pixel, derived from a digital elevation model 
(DEM). 
 

SLOPE 

Slope is the percentage of maximum change in elevation at a pixel. 
 

COSINE TRANSFORMED ASPECT 

Aspect is continuous from 0 to 360 degrees but discontinuous from 360 to 1 degrees. Cosine 
transformation of aspect transforms aspect into a measure of ‘northness’ and ‘southness.’ 
Thus, negative values are associated with south-facing slopes and positive values are associated 
with north-facing slopes. 
 

COS/SLOPE TRANSFORMED ASPECT 

Like the cosine transformed aspect, the cos/slope transformed aspect translates aspect onto 
the scale of -1 (south) and 1 (north) but modifies it by the slope such that areas of higher slope 
have more extreme (positive or negative) values. 
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SIN/SLOPE TRANSFORMED ASPECT 

Cos/slope transformed aspect translates aspect onto the scale of -1 (west) and 1 (east) but 
modifies it by the slope such that areas of higher slope have more extreme (positive or 
negative) values. 
 

TOPOGRAPHIC RUGGEDNESS INDEX 

Topographic Ruggedness Index (TPI) is a measurement expressing the elevation difference 
between adjacent cells in a DEM. 
 
Riley, S. J., S. D. DeGloria, and R. Elliot (1999). A terrain ruggedness index that quantifies topographic 

heterogeneity, Intermountain Journal of Sciences, vol. 5, No. 1-4,1999.  

 

COMPOUND TOPOGRAPHIC INDEX 

Compound Topographic Index (CTI) is a steady state wetness index that is a function of the 
slope and upstream contributing area. Jeff Evans describes the variable on the ESRI arcscripts 
forum (http://arcscripts.esri.com/details.asp?dbid=11863): 

 

CTI is a steady state wetness index. The CTI is a function of both the slope and the upstream contributing 
area per unit width orthogonal to the flow direction. CTI was designed for hillslope catenas. Accumulation 
numbers in flat areas will be very large and CTI will not be a relevant variable. CTI is highly correlated with 
several soil attributes such as horizon depth(r=0.55), silt percentage(r=0.61), organic matter 
content(r=0.57), and phosphorus(r=0.53) (Moore et al. 1993).  
 
The implementation of CTI can be shown as:  
CTI = ln (As / (tan(beta)) where As = Area Value calculated as (flow accumulation + 1 ) *(pixel area m2) and 
beta is the slope expressed in  
radians.  
 
References:  
 
Gessler, P.E., I.D. Moore, N.J. McKenzie, and P.J. Ryan. 1995. Soil-landscape modeling and spatial 
prediction of soil attributes. International Journal of GIS. Vol 9, No 4, 421-432.  
 
Moore, I D., Gessler, P.E., Nielsen, G.A., and Petersen, G.A. 1993. Terrain attributes: estimation methods 
and scale effects. In Modeling Change in Environmental Systems, edited by A.J. Jakeman, M.B. Beck and M. 
McAleer (London: Wiley), pp. 189 - 214.  
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Spatially Explicit Estimates of Occupancy Probability for Three Songbird Species 
on the Kaibab National Forest 
 

BACKGROUND AND JUSTIFICATION 

Songbirds are considered to be responsive to a variety of “environmental quality” attributes, 

and are commonly monitored to assess the impacts of management activity due to their 

sensitivity to changes in vegetation structure and composition (Saracco et al. 2008; Dickson et 

al. 2009).  Additionally, species designated by the U.S. Forest Service as Management Indicator 

Species (MIS) are those whose population changes are believed to “indicate the effects of 

management activities” (Stein Foster et al. 2010).   Population changes are usually assessed by 

estimating how density or abundance changed over time or in response to management 

actions.  A variety of techniques have been developed to reduce bias in density and abundance 

estimates that results when species are detected imperfectly or infrequently, as is often the 

case with songbirds (Rosenstock et al. 2002; Dickson et al. 2009).  Many of these techniques, 

however, require moderate-to-large sample sizes to generate estimates with the necessary 

precision to detect trends or environmental (e.g., habitat) relationships (MacKenzie et al. 2005). 

Occupancy, in cases where sample sizes are large, can be defined as the proportion of 

total area occupied and can provide a useful alternative to density or abundance, especially for 

uncommon species (MacKenzie et al. 2006).  More generally, occupancy also can be interpreted 

as the probability of locating an individual of species x in location y.  This interpretation 

(probability of occupancy) reflects an a priori expectation that a site will be occupied based on a 

hypothesis about the underlying process determining occupancy.  The former interpretation 

(proportion of area occupied) is the realization of that process, given large sample sizes 

(MacKenzie et al. 2006).  Recent advances in occupancy estimation techniques allow habitat 

covariates to be incorporated into estimates of occupancy, colonization, and local extinction 

while accounting for detection probability resulting in estimates that are less biased than naïve 

estimates (i.e., those that assume perfect detectability) (MacKenzie et al. 2003; MacKenzie et 

al. 2006). 
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 Site occupancy can be used in a monitoring context to reflect the current state of the 

population and, through multi-season extensions, provide information on population trends.  

Estimating occupancy often requires fewer detections than other density estimation techniques 

allowing for more precise estimates of rare or infrequently detected species (MacKenzie et al. 

2003; MacKenzie et al. 2005).  Furthermore, efforts to relate occupancy to habitat or 

environmental covariates allow estimation and prediction of changes in population state due to 

coarser-scale changes in land-use and climate (e.g., Dickson et al. 2009; Mattsson & Marshall 

2009).  Deriving these habitat-occupancy relationships using high-resolution satellite imagery 

provides the opportunity to identify the impacts of more localized changes (e.g., forest 

restoration treatments) across larger spatial scales. 

 The Kaibab National Forest (KNF) recently began a formal Land Management Plan 

revision process (NFMA 1976).  Establishing current trends for MIS (Stein Foster et al. 2010), 

identifying potential new MIS, and developing monitoring strategies to assess management 

impacts on those species are integral components of the plan revision process.  Here, we 

leveraged data collected through the KNFs songbird monitoring program to derive baseline 

estimates of occupancy and identify environmental variables likely to be impacted by future 

forest management that influence occupancy.  For three species of songbird, we used multi-

season data and multi-model inference to develop models that predict occupancy dynamics 

(e.g., probabilities of detection, occupancy, colonization and local extinction), provide new 

information on temporal trends in occupancy, and generate spatially explicit, probabilistic 

surfaces within a GIS that permit the identification of areas with relatively high and low 

occupancy under current conditions.  In addition, these models can be used in conjunction with 

a suite of tools designed to rapidly derive forest structural attributes from subsequent Landsat 

TM imagery (see above section) to identify changes in occupancy due to forest management 

activities.  The following report describes the results for three proposed MIS (Grace’s Warbler 

(Dendroica graciae), Ruby-crowned Kinglet (Regulus calendula), and Western Bluebird (Sialia 

mexicana)) known to occupy mixed-conifer, ponderosa pine, and piñon-juniper dominated 

areas. 
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METHODS 

 

AVIAN SURVEYS 

The KNF initiated point-transect songbird surveys in 2005.  Thirty-five transect lines were 

randomly assigned within aspen, montane grassland, ponderosa pine, mixed-conifer, and 

piñon-juniper vegetation types based on stand exam data.  Additional transect lines were 

established using the same assignment protocol in 2006, 2007, and 2008 for a total of 90 

transects within the ponderosa pine, mixed-conifer, and piñon-juniper vegetation types.  The 

aspen and montane grassland vegetation types were eliminated from sampling after the 2006 

season (B. Noble, 2010 USDA Forest Service Four Forest Restoration Initiative Core Team, 

personal communication).  USFS personnel conducted 5-minute point counts at locations along 

each transect line in 2005 and 2006 using a 100-m fixed radius distance sampling protocol 

(Buckland et al. 2001).  The Rocky Mountain Bird Observatory was contracted to conduct all 

surveys in subsequent years using 125-m fixed radius distance sampling and their standard 

habitat-stratified point-transect protocol (Hanni et al. 2009). 

 

DERIVATION OF ENVIRONMENTAL VARIABLES 

Within a GIS (Geographic Information System; ArcGIS v9.3.1, Environmental Systems Research 

Institute, Inc., Redlands, CA), we spatially defined linear transect locations using the global 

positioning system (GPS) coordinates of individual points along each transect line.  We then 

buffered each transect by 125 m and computed multiple statistics (e.g., mean, standard 

deviation, majority, variety) for the environmental variables below within this buffered extent 

using zonal statistics.   

We derived management-relevant forest structural variables predicted to influence 

patterns of songbird occupancy using data from spatially referenced USDA Forest Service Forest 

Inventory and Analysis (FIA) plots and terrain corrected and radiometrically calibrated multi-

date Landsat Thematic Mapper imagery (30-m pixel resolution). Methods for producing these 
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structural variables are described in detail in the previous section.  Within the GIS, we used 30-

m resolution data obtained from the interagency LANDFIRE (Landscape Fire and Resource 

Management Planning Tools) program website (www.landfire.gov), including derivatives of the 

National Elevation Dataset (NED; slope and aspect), to model additional environmental and 

terrain features.  Expected vegetation type (EVT) and variation in EVT were derived using the 

latest ‘rapid refresh’ version of LANDFIRE EVT data and calculated using a majority and variety 

estimate within each buffered transect.  As a surrogate for unmeasured mesic conditions, we 

estimated the degree of northeastern orientation of each transect using the sum of all cosine 

transformed values of aspect within a buffered transect (result scaled between 0.0 and 1.0).   

Each of the above environmental variables was derived at a 30-m resolution prior to 

analysis.  Prior to implementing our occupancy models, we standardized and rescaled values for 

all continuous environmental variables to a mean of zero and unit variance (Neter et al. 1996). 

We also calculated correlations between values of all pairs of environmental variables among 

all survey transects.  Some variables, including tree density, had univariate correlation 

coefficients > 0.70 and were therefore excluded from our analyses; all other pairs of variables 

were not highly correlated and were considered in our analyses. 

 

SINGLE SEASON MODELS OF OCCUPANCY 

We used the single season occupancy framework of MacKenzie et al. (2006) to estimate 

probabilities of occupancy and detection for the period 2006–2009.  Data from 2005 were not 

used due to insufficient sample size for estimating detection probability.  We defined 

occupancy (ψ) as the expected probability that a given site (i.e., transect) was occupied by a 

species during the period of analysis and detection probability (p) as the probability of 

detecting the species at a site if it was present during a count in that period (Dickson et al. 

2009; MacKenzie et al. 2006).  We derived estimates for each parameter separately based on 

“full” models that simultaneously included the most parsimonious model for the other 

parameters (Dickson et al. 2009).  We used Akaike’s Information Criterion (AIC; Burnham & 

Anderson 2002) to identify the “best” model(s) among a candidate set of nested models that 

each represented a priori-determined combinations of the environmental covariates defined 

above (Table 1).  We also included null models of occupancy and detection probability (denoted 
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by ‘dot’ models) within each candidate set to evaluate the performance and fit of the “best” 

models (Anderson 2008).  We considered candidate models with AIC difference (ΔAIC) values < 

4.0 as those that best approximated the data and used these models to calculate model-

averaged regression coefficients and unconditional standard errors (Burnham & Anderson 

2002).  Strong predictors were evaluated by dividing regression coefficients by their 

unconditional standard error to calculate the Z-statistic for each variable.  A predictor with a Z 

value >|2.0| was determined to be a reasonably strong predictors of occupancy, with the sign 

of the Z value used for interpretation of the nature of the relationship (Dickson et al. 2009).  

Models that failed to converge or produced invalid parameter estimates were not considered in 

model sets used for inference.  We conducted all analyses using the single season occupancy 

estimation routine in program PRESENCE (v2.2; Hines 2006). 

 

SPATIALLY EXPLICIT MODELS OF OCCUPANCY 

For each species, we used model-averaged estimates of the regression coefficients obtained 

with the single season routine in PRESENCE to build a continuous response surface within the 

GIS based on forest structural attributes in 2006 and then again in 2010.  This spatially explicit 

model predicted (i.e., estimated) the relative probability of occupancy across the study area at 

a 30-m resolution for both time periods.  

 

DYNAMIC MODELS OF OCCUPANCY 

We utilized the multi-season occupancy modeling framework of MacKenzie et al. (2003, 2006) 

and Dickson et al. (2009) to estimate probabilities of detection, occupancy, colonization (γ), and 

local extinction (ε) for 2006-2009.  Following MacKenzie et al. (2006), colonization was defined 

as the probability that an unoccupied site in a given season was occupied by a species the 

following season and local extinction as the probability that a site occupied by a species in a 

given season was unoccupied the following season. We assumed that annual changes in 

colonization and local extinction represented dispersal and temporary emigration, respectively.  

Again, 2005 was not included in our analysis due to insufficient sample size.  In order to 

illustrate trends in occupancy, we derived initial estimates of occupancy for 2006 and then 

estimated subsequent, year-specific estimates for 2007-2009 by modeling probabilities of 
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colonization and local extinction (MacKenzie et al. 2003).  We conducted all analyses using the 

multi-season occupancy estimation feature in program PRESENCE.   

 

RESULTS 

 

AVIAN SURVEYS 

A total of 3427 surveys were conducted from 2006–2009, with the greatest number of counts 

(n = 1183) conducted in 2008 and the fewest (387) in 2006.  Grace’s Warbler and Ruby-crowned 

Kinglet had more detections in 2009 than any other year (255 and 241 detections, respectively), 

while Western Bluebird were detected more frequently in 2008 (186 detections).  Grace’s 

Warbler, Ruby-crowned Kinglet, and Western Bluebird were detected a total of 764, 695, and 

483 times, respectively, across all years of the study.  With the exception of a marked decrease 

for Ruby-crowned Kinglet between 2005 and 2006, detection probabilities were not highly 

variable, but generally much less than 1 (i.e., < 0.50; Figure 1). 

 

SINGLE SEASON MODELS OF OCCUPANCY  

For each species, models relating environmental variables to probability of occupancy 

performed better than the null model (ΔAIC<12.4; AIC model weight 0.26 – 0.47); however, 

results for Grace’s Warbler and Ruby-crowned Kinglet indicated a much stronger relationship 

with environmental variables while a more intermediate relationship was seen for Western 

Bluebird (Table 1).  Basal area and canopy cover were both strong positive predictors of 

occupancy for Grace’s Warbler (Z >2.00; Table 2).  Vegetation type was the only “strong” 

predictor for Western Bluebirds with occupancy rates higher in ponderosa pine than other 

communities.  Basal area and vegetation type, namely a negative association with ponderosa 

pine, were also strong predictors for Ruby-crowned Kinglets (Table 2).  The quadratic form of 

basal area, variation in basal area or density, variation in vegetation type, and expressions of 

canopy cover were present in many of the best models but were not strong predictors of 

occupancy (Table 2). 

 



  

42 | P a g e  

 

 

SPATIALLY EXPLICIT MODELS OF OCCUPANCY 

Our single season models of occupancy indicated affinities for environmental variables that 

were different for each species.  Accordingly, these results were reflected in our spatially 

explicit models of occupancy in both 2006 and 2010.  Relatively high probabilities of occupancy 

were predicted for Western Bluebird (Figures 7 and 8) across most of the study area. 

Predictions for Grace’s Warbler suggested a more restricted spatial distribution in this species 

(Figures 3 and 4).  Results for Ruby-crowned Kinglet indicated also were restricted, with areas of 

high occupancy predicted primarily in higher-elevation mixed-conifer forests (Figures 5 and 6).  

A comparison of model predictions from 2006 and 2010 depicted changes in occupancy of 

Grace’s Warbler resulting from associated changes in forest structural attributes in the 

intervening years (Figure 9). 

 

 DYNAMIC MODELS OF OCCUPANCY 

We generated trends in occupancy for both Grace’s Warbler and Western Bluebird using multi-

season occupancy models.  Annual estimates of occupancy for Grace’s Warbler were highest in 

2006 (0.57; Figure 2), lowest in 2007 (0.41), and appeared to increase slightly between 2008 

and 2009.  Similarly, this species displayed annual increases in colonization while local 

extinction rates were similar across years (Table 3).  Western Bluebird occupancy was constant 

or increasing throughout the analysis period (between 0.48 and 0.58; Figure 2). 

  

DISCUSSION 

Model selection results indicated that single-season models of occupancy that included 

environmental covariates performed considerably better than the null model for all species.  

These results provide evidence that forest structural attributes likely to be impacted or 

manipulated by forest restoration activities can be important predictors of occupancy; 

however, from a bird’s perspective, there likely are more biologically meaningful covariates 

(e.g., presence of snags) than were examined here.  Models incorporating environmental 

covariates outperformed the null models for all species, although many of the variables 
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contained in the best models had Z-scores <2.0, indicating some degree of variable uncertainty 

associated with identifying the single strongest predictor of occupancy.  This provides an 

indication that there were indeed additional biologically relevant covariates that could have 

been examined; however, those covariates may not be as sensitive to forest restoration 

treatments (e.g., slope, elevation, etc.). 

Comparison of the best (in terms of AIC value) models with the null models for the less 

common Grace’s Warbler, Ruby-crowned Kinglet, and Western Bluebird indicated that the 

environmental elements examined here were strongly associated with occupancy for these 

species.  Our usage of model-averaged parameter estimates to develop continuous, spatially 

explicit probabilistic surfaces directly incorporated this model selection uncertainty.  

Additionally, given that detection probabilities varied by species, changed annually, and often 

were considerably less than one (Figure 1), these results can be viewed as unbiased relative to 

approaches that do not explicitly account for detection probability.  Finally, multi-season 

occupancy models indicated stable trends for Western Bluebird and increasing (although 

variable) trends for Grace’s Warbler.  Small sample size in the initial years of surveys prevented 

evaluation of trends for Ruby-crowned Kinglet. 

 Grace’s Warbler is typically found in xeric pine or pine-oak dominated habitats   

characterized by larger trees with mid-range values of canopy cover (Stacier & Guzy 2002).  

While we did not focus on ecologically or biologically meaningful covariates, our results 

indicated that both basal area and lower canopy cover were strong positive predictors of 

occupancy for Grace’s Warbler.  Planned management actions on the Kaibab National Forest 

that reduce canopy cover with minimal effects on basal area are likely to result in increases in 

predicted occupancy for Grace’s Warbler. 

Studies of Western Bluebird habitat have documented preferences for more open, park-

like forested settings (Guinan et al. 2008; Kingery & Ghalambor 2001).  While we observed a 

strong relationship between ponderosa pine and bluebird occupancy, few forest structural 

variables were strong predictors of occupancy.  While planned management activities that do 

not result in vegetation community change are unlikely to affect bluebird occupancy, our 
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results indicate that some change in bluebird occupancy may result from associated changes in 

basal area. 

 Although Ruby-crowned Kinglet is not a mixed-conifer obligate (Swanson et al. 2008), 

the strong negative association with ponderosa pine that we observed resulted in occupancy 

estimates that were higher within the mixed-conifer vegetation type. The positive association 

with basal area and negative association with intermediate canopy cover values may also be 

more indicative of current conditions in mixed conifer forests.  Management actions that 

reduce these conditions are likely to result in changes in kinglet occupancy.    

Trends in occupancy for Grace’s Warbler indicated an initial decline between 2006 and 

2007, followed by a gradual increase in subsequent years.  Western Bluebird trends were 

similar for the latter portion of our study, but showed a marked increase between 2006 and 

2007.  Caution should be used in interpreting the magnitude of these trends given the standard 

errors for annual estimates of occupancy for each species.  Trends were not presented for the 

Ruby-crowned Kinglet due to the sharp change in detectability from 2006 to 2007 and 

insufficient sample sizes to estimate colonization and local extinction rates for the first two 

years of surveys.   

 

CONCLUSIONS AND FUTURE DIRECTIONS 

The sampling design and resolution of the spatial data used here are intended to provide 

estimates of environmental relationships at mid- to landscape scales that can be used for 

monitoring and predicting the response of a species to future treatments and are not 

appropriate for identifying fine-scale habitat associations that are more appropriately 

evaluated using other techniques, such as territory mapping.  Additional fine-scale habitat 

information (e.g., presence of snags, presence of large trees, etc.) could be used within a 

hierarchical modeling framework (e.g., Mordecai et al. 2011) to further refine the models used 

here and more explicitly account for the multiple scales at which songbirds are likely using 

habitat. 

For these analyses, we generated models of occupancy for all three species relating 

probability of occupancy to a suite of environmental (i.e., forest structure) covariates that were 
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likely to be altered by forest restoration or fuels reduction treatments.  The probabilistic 

surfaces generated using these models reflect occupancy under forest conditions in 2006 and 

2010.  Figure 9 illustrates a potential application of these two datasets for examining change 

over time, where occupancy estimates (i.e., regression coefficients) from 2006, and conditioned 

on forest structure layers derived for that year,  are used to estimate occupancy in 2010, in turn 

conditioned on forest layers derived for 2010.  Changes in occupancy between 2006 and 2010, 

or subsequent years, could be used to monitor and evaluate any landscape-scale effects of 

management actions on these species.  In addition, these models can serve as a valuable tool 

for analyzing the potential effects of management actions on forests structure and wildlife in a 

scenario-based framework, and before these actions are implemented.  For example, forest 

structural variables can be modified based on hypothetical forest treatments and the 

occupancy models re-run to determine potential treatment outcomes.   

Using multi-season occupancy methods, we were able to derive trends for two of the 

three species of interest.  Tracking these trends over time can provide land managers with 

valuable information regarding the cumulative impacts of ongoing management activities.  

Additionally, for species with small sample sizes, annual occupancy rates can be more precisely 

estimated than estimates of density or abundance, and may yield trend information more 

efficiently than alternative methods.  Also, for species with sufficient sample size, 

environmental covariates can be related to colonization and local extinction rates to provide 

managers with additional information on how management activities may impact songbird 

occupancy dynamics. 

Coarse measures of abundance or density are often used to indicate the effects of 

management action or environmental change on songbirds.  Indeed, when species are detected 

imperfectly, precise and unbiased estimates of these quantities can be difficult or expensive to 

obtain.  Occupancy estimation techniques provide a powerful and meaningful alternative to 

estimation or index-based techniques that do not directly account for imperfect detection, 

especially when the goal of a study is to quantitatively relate environmental characteristics to 

the response variable of interest (Zylstra et al. 2010).  In addition, occupancy may be a more 

meaningful indicator of habitat quality as it is less subject to fluctuations in density or 



  

46 | P a g e  

 

abundance due to factors (e.g., changes on the wintering ground of a migratory species) 

unrelated to the habitat or environmental variables of interest.   Conveniently, occupancy 

estimates can be mathematically related to estimates of abundance in situations where such 

information is complimentary or required (Royle & Nichols 2003).   
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Table 1. Results of occupancy model selection for Grace’s Warbler, Ruby-crowned Kinglet, and Western 
Bluebird on the Kaibab National Forest (Arizona, USA). Modeled effects (i.e., habitat variables) included basal 
area (BA), standard deviation of basal area (BA_SD), standard deviation of tree density (TPA_SD), variation in 
existing vegetation type (VarEVT), ponderosa pine vegetation type (VegPP), mixed-conifer vegetation type 
(VegMC) northeastern orientation (NE), and percent canopy cover (CC__).  Canopy cover is expressed as “1” 
for all values <35% (CC35), all values ≤21.03% (CC21), or all values >21.03% and ≤46.56% (CC47).  All variables 
were derived from digital data. Squared term indicates the quadratic form of the variable (BA2). Null models 
are denoted by ( . ).  Yearly differences in detection probability are denoted as (y).  All models were 
conditioned on a single best model of detection probability, where p for Grace’s Warbler, Ruby-crowned 
Kinglet, and Western Bluebird was a function of (y, BA, BA2, BA_SD, TPA_SD, CC21, CC47, VegPP, VarEVT,  NE), 
(y, BA, BA2, BA_SD,TPA_SD, CC21, VegPP, VegMC, VarEVT, NE ), and (y, BA, BA2, BA_SD, VegPP, VarEVT, NE) 
respectively. 

Model K1 AIC2 ΔAIC3 w4 

Grace’s Warbler 
ψ(BA, BA_SD, TPA_SD, CC21, CC47, VarEVT)  20 2383.32 0.00 0.3557 

ψ(BA, BA_SD, TPA_SD, CC21, CC47) 19 2383.56 0.24 0.3154 
ψ(BA, BA_SD, TPA_SD, CC21, CC47, VegMC, VarEVT) 21 2384.86 1.54 0.1647 

ψ(BA, TPA_SD, CC21, CC47) 18 2385.86 2.54 0.0999 
ψ(BA, BA_SD, TPA_SD, CC21, CC47, VegMC, VarEVT, NE) 22 2386.74 3.42 0.0643 
ψ( . ) 14 2404.93 21.61 0.0000 
     
Ruby-crowned Kinglet 

ψ(BA, TPA_SD, CC47, VegPP) 18 1400.75 0.00 0.4664 

ψ(BA, BA2, TPA_SD, CC47, VegPP) 19 1402.01 1.26 0.2484 

ψ(BA, BA2, BA_SD, TPA_SD, CC47, VegPP) 20 1403.69 2.94 0.1072 
ψ(BA, CC47, VegPP) 17 1404.09 3.34 0.0878 
ψ( . ) 14 1427.84 27.09 0.0000 
     

Western Bluebird 

ψ(BA, BA2, VegPP) 15 2036.03 0.00 0.2570 
ψ(BA, BA2, CC35, VegPP) 16 2036.63 0.60 0.1904 

ψ(BA, BA2, CC35, VegPP, VegMC) 17 2037.10 1.07 0.1505 
ψ(BA, BA2, CC35, VegPP, VegMC, VarEVT) 18 2037.24 1.21 0.1404 
ψ(BA, BA2, BA_SD, CC35, VegPP, VegMC, VarEVT) 19 2037.50 1.47 0.1232 
ψ(BA, BA_SD, CC35, VegPP, VegMC, VarEVT) 18 2038.61 2.58 0.0708 
ψ(BA, BA2, BA_SD, CC35, VegPP, VegMC, VarEVT, NE) 20 2039.34 3.31 0.0491 
Ψ( . ) 12 2048.45 12.42 0.0005 

1Total number of model parameters, including those used to estimate p 
2Akaike’s Information Criterion 
3AIC difference value  

4AIC model weight 
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Table 2. Model-averaged regression coefficients , unconditional standard errors (SE), and Z-statistics (Z) for habitat 

variables included in the best model(s) (AIC<4.0; Table 1) of occupancy for Grace’s Warbler, Ruby-crowned Kinglet, and 
Western Bluebird on the Kaibab National Forest (Arizona, USA). Estimates of basal area, the quadratic form of basal area, 
standard deviation of basal area, and standard deviation of tree density are based on standardization and rescaling of all 
variables prior to analysis, and conditioned on a single best model of detection probability (Table 1). Variables that were not 
estimated because they were absent from the best model set are denoted as “—“.  

 Grace’s Warbler  Ruby-crowned Kinglet  Western Bluebird 

Habitat variable  SE Z1   SE Z1   SE Z1 

Basal area 4.02 1.18 3.42  1.19 0.43 2.73  0.46 0.69 0.67 

Basal area squared — — —  -0.19 0.34 -0.57  -0.80 0.44 -1.80 

Standard deviation of basal 
area 

1.03 0.67 1.54  -0.04 0.11 -0.35  0.20 0.36 0.56 

Standard deviation of tree 
density 

-0.99 0.62 -1.59  0.48 0.30 1.58  — — — 

Canopy cover (≤21.03%) 4.71 2.28 2.06  — — —  — — — 

Canopy cover 
(21.03%<x≤46.56%) 

2.41 1.20 2.01  -1.25 0.66 -1.91  — — — 

Canopy Cover (≤35%) — — —  — — —  0.89 1.14 0.78 

Ponderosa pine vegetation 
type 

— — —  -1.87 0.70 -2.67  2.39 0.95 2.52 

Mixed-conifer vegetation 
type 

0.16 0.38 0.43  — — —  -0.54 0.71 -0.75 

Variation in vegetation type 0.26 0.38 0.67  — — —  0.08 0.17 0.49 

Northeastern orientation -0.02 0.08 -0.28  — — —  0.02 0.07 0.31 

Intercept -3.40 1.65 -2.06  0.50 0.60 0.83  0.53 0.74 0.72 

1Computed as   
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Table 3. Parameter estimates (± 1 SE) for the probability of colonization (γ ) and local extinction (ε ) of Grace’s 
Warbler and Western Bluebird on the Kaibab National Forest (Arizona, USA) based on ψ2006(.)γ(y)ε(y)p(.) and 
ψ2006(.)γ(y)ε(y)p(y+BA+BA2+BA_SD+TPA_SD+CC35 +VegPP+VegMC+VarEVT+NE) respectively.  Estimates for Ruby-
crowned Kinglet are not presented due to failure to achieve model convergence as a result of insufficient sample 
size in 2007.   

  Year 

Species 
 

2007  2008 
 

2009 

Grace’s Warbler 
γ  0.014 (0.060)  0.309 (0.068)  0.274 (0.064) 

ε  0.290 (0.099)  0.367 (0.087)  0.244 (0.069) 

Western Bluebird 
γ  0.342 (0.146)  0.317 (0.115)  0.313 (0.090) 

ε  0.256 (0.162)  0.286 (0.091)  0.177 (0.072) 
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Figure 1.  Annual estimates (±1 SE) of detection probability for Grace's Warbler, Ruby-
crowned Kinglet, and Western Bluebird on the Kaibab National Forest (Arizona, USA).  
Estimates derived using: ψ2006(BA+BA2+BA_SD+TPA_SD+ CC35+VegPP+VegMC+VarEVT+ 
NE)γ(y+BA+BA2+BA_SD+TPA_SD+ CC35+VegPP+VegMC+VarEVT+ NE) 
ε(y+BA+BA2+BA_SD+TPA_SD+ CC35+VegPP+VegMC+VarEVT+ NE)p(y) [Grace’s Warbler]; 
ψ2006(BA+BA2+BA_SD+TPA_SD+CC35+NE)γ(BA+BA_SD+TPA_SD+VarEVT+NE) 
ε(BA+BA2 +VarEVT+NE)p(y)[Ruby-crowned Kinglet]; ψ2006(BA+BA2+BA_SD+TPA_SD+ 
CC35+VegPP +VarEVT+NE)γ(BA+BA2+BA_SD+TPA_SD+CC35+VegPP+VarEVT+NE) 
ε( BA+BA2 +VarEVT+NE)p(y)[Western Bluebird].  Refer to Table 1 for explanations of 
symbols. 
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Figure 2.  Annual estimates (±1 SE) of occupancy for Grace's Warbler and Western Bluebird on 
the Kaibab National Forest (Arizona, USA).  Annual estimates for Ruby-crowned Kinglet are not 
presented due to failed model convergence resulting from insufficient sample size in 2007.  
See Table 3 for models used to derive estimates. 
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Figure 3. Spatially explicit model of Grace’s Warbler occupancy on the Kaibab National Forest (Arizona, 
USA) in 2006.  Models of occupancy were developed using 2006 forest structural data and species 
observations from 2006-2009.  See Table 2 for model-averaged regression coefficients used to derive 
this response surface.  Insets detail occupancy estimates for each ranger district of the Kaibab National 
Forest.
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Figure 4. Spatially explicit model of Grace’s Warbler occupancy on the Kaibab National Forest (Arizona, 
USA) in 2010.  Models of occupancy were developed using 2006 forest structural data and species 
observations from 2006-2009 then predicted using 2010 forest structural data.  See Table 2 for model-
averaged regression coefficients used to derive this response surface.  Insets detail occupancy estimates 
for each ranger district of the Kaibab National Forest. 
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Figure 5. Spatially explicit model of Ruby-crowned Kinglet occupancy on the Kaibab National Forest 
(Arizona, USA) in 2006.  Models of occupancy were developed using 2006 forest structural data and 
species observations from 2006-2009.  See Table 2 for model-averaged regression coefficients used to 
derive this response surface.  Insets detail occupancy estimates for each ranger district of the Kaibab 
National Forest. 
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Figure 6. Spatially explicit model of Ruby-crowned Kinglet occupancy on the Kaibab National Forest 
(Arizona, USA) in 2010.  Models of occupancy were developed using 2006 forest structural data and 
species observations from 2006-2009 then predicted using 2010 forest structural data.  See Table 2 for 
model-averaged regression coefficients used to derive this response surface.  Insets detail occupancy 
estimates for each ranger district of the Kaibab National Forest. 
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Figure 7. Spatially explicit model of Western Bluebird occupancy on the Kaibab National Forest (Arizona, 
USA) in 2006.  Models of occupancy were developed using 2006 forest structural data and species 
observations from 2006-2009.  See Table 2 for model-averaged regression coefficients used to derive 
this response surface.  Insets detail occupancy estimates for each ranger district of the Kaibab National 
Forest. 
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Figure 8. Spatially explicit model of Western Bluebird occupancy on the Kaibab National Forest (Arizona, 
USA) in 2010.  Models of occupancy were developed using 2006 forest structural data and species 
observations from 2006-2009 then predicted using 2010 forest structural data.  See Table 2 for model-
averaged regression coefficients used to derive this response surface.  Insets detail occupancy estimates 
for each ranger district of the Kaibab National Forest. 
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Figure 9. An example of the use of spatially explicit occupancy models for monitoring wildlife response 
to forest structural change.  The figure displays occupancy values for Grace’s Warbler within the Elk-Lee 
project and an adjacent fire on the Kaibab National Forest (Arizona, USA) in 2006 and 2010.  Probability 
of occupancy decreases as colors move from blue to red (yellow is intermediate). 
 

2006 2010 
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